

Emissions from coal-fired boiler flue gas contain air pollution precursor nitrogen oxides (NO, NO_2 , referred to as NOx). Reduction of NOx emissions is the focus of most national environmental laws and regulations. Currently the mainstream technology for flue gas denitrification (DeNOx) processes is by injecting ammonia into the flue gas, reacting with NOx to produce non-harmful N_2 and H_2O .

The residual NH_3 concentration (ammonia slip) in the off gas must be monitored in real time to ensure sufficient NH_3 reacts with NOx, and avoid excessive NH_3 slip. Controlling the amount of NH_3 slip at the SCR outlet below 3 ppm can prolong the air preheater maintenance cycle and the catalyst replacement cycle. Sometimes NO monitoring is a favorable plus to further optimize the process efficiency.

FEATURES

- Leading-edge QC laser technology, sensitivity up to 0.1 ppm with very short response time
- No need for multiple reflection absorption cell, simple and stable opto-mechanics, low maintenance costs
- 190°C heated gas cell, unique high-temperature ammonia absorption line without water peak interference
- Online calibration, flexible configuration, OEM module ideal for system integration

Beebird[™] QCL-BASED

NH₃ ANALYZER

SENSOR SPECIFICATIONS

Technology	QCLAS (Quantum Cascade Laser Absorption Spectroscopy)	
Specifications	Measuring range	0 ~ 300 ppm
	Detection limit/Resolution	0.1 ppm (1s integration time)
		0.03 ppm (10s integration time)
	Response time (T90)	≤ 5s (gas flow > 2L/min)
	Size	345 × 142 × 220 mm³ (L×W×H)
	Weight	~10 kg
Ports	Analog output	4 ~ 20mA output (max. load 750 Ω)
	Digital output	RS-232 serial
Work condition	Power	220VAC for heating (typ. 200W)
		24VDC for sensor (typ. 50W)
	Temperature	-10°C~50°C

MECHANICAL DIMENSION

Notes from drawing:

- ① Ports for circulation chiller fluid
- ② Sample gas inlet/outlet
- ③ Power connector for heating
- Chinese&US patents pending
 - 2018113097817 2018113945074 201910654684X

FIELD MEASUREMENT

用

田

盟

HEALTHYPHOTON TECHNOLOGY CO., LTD EMAIL: INFO@HEALTHYPHOTON.COM TEL: +86-156-1892-2826

141.5

220